

GENERATION INTERCONNECTION REQUEST # GI-2016-30

FEASIBILITY STUDY REPORT 30 MW PV SOLAR, WELD COUNTY, COLORADO

XCEL ENERGY – PSCO TRANSMISSION PLANNING WEST

June 9, 2017

Executive Summary

On November 18, 2016, Public Service Company of Colorado (PSCo) Transmission received a large generator interconnection request (GI-2016-30) to determine the feasibility of interconnecting a new 30 MW photovoltaic generation facility to the Vasquez Substation (located in Weld County, Colorado). The Customer requested a primary Point of Interconnection (POI) at the Vasquez 115kV Substation. No alternative POI was requested. The generation facility will connect to the POI via a Customer owned 200 feet 115kV line. Generation from the new facility will be supplied to PSCo native load Customers. The Customer has proposed a commercial operation date of December 31, 2019, with an assumed back-feed (for site energization) date of June 30, 2019.

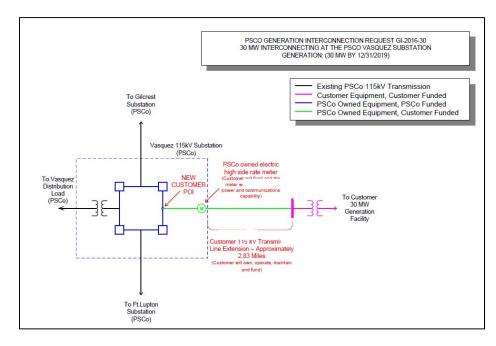
This generator interconnection request was studied as a stand-alone project only. All generation interconnection requests at a higher position in PSCo's "Generation Interconnection Requests" Queue on the PSCO Home OASIS, other than those generator interconnection projects that are already planned to be in service by December 31, 2019, were not modeled.

The main purpose of this Feasibility Study is to evaluate the potential impact on the PSCo transmission infrastructure as well as that of neighboring utilities, when injecting 30 MW of generation at the Customer requested POI, and delivering the additional generation to PSCo native loads. Results of the study analysis will determine whether or not the interconnection of GI-2016-30 to the transmission system is feasible, and if deemed feasible, the "good faith estimate" of the costs necessary for interconnection.

This study included a steady-state power flow and short-circuit analysis. Benchmarking was accomplished using a Western Electricity Coordinating Council (WECC) approved 2022 Heavy Summer (HS) case. The study compared the impacts when adding GI-2016-30 to the benchmark case at the Customer requested POI. The generation sink was set to Comanche Unit 2 (area swing). Single (N-1) and select multiple contingency outages were applied. Comanche Unit 2 (a base load unit south of Daniels Park) was selected as the generation sink in order to stress the Denver Metro load-serving area between Vasquez (the POI) on the north and Daniels Park on the south. PSCo Operations would likely select a gas-fired generator to displace the generation

addition at Vasquez; however, this would have not have provided the same transmission stress as using Comanche Unit 2.

As a result of the addition of the generation facility GI-2016-30 at both the primary POI and the alternate POI, no transmission elements were overloaded, and no voltage issues were observed other than those that were already present in the benchmark case. Additionally, results of the short circuit analysis showed no circuit breakers over-duty due to the addition of the new generation facility.



This study indicates interconnection to the PSCo network is feasible.

Estimates were only developed for the primary POI. The total estimated cost of the recommended system upgrades to interconnect GI-2016-30 to the transmission system at the primary POI is approximately \$ 9,135,000 and includes:

- \$850,000 for PSCo Owned, Customer Funded Interconnection Facilities
- \$8,285,000 for PSCo Owned, PSCo Funded Network Upgrades for Interconnection
- \$ 0 for Non PSCo Network Upgrades for Delivery

A conceptual one-line of the new GI-2016-30 primary POI at the Vasquez 115kV Substation detailing the Interconnection and Delivery is shown below in Figure 1.

I. Introduction

Public Service Company of Colorado (PSCo) received a large generator interconnection request on November 18, 2016, to determine the feasibility of interconnecting a new 30 MW of photovoltaic generation facility which would be located approximately 200 feet away from the existing PSCo owned Vasquez 115kV Substation in Weld County, Colorado.

The Customer's project facility is assumed to include a 30 MW collector system of photovoltaic arrays and would be located in Weld County, Colorado. The generator is assumed to operate between a +/- 0.95 power factor. The Customer requested a primary Point of Interconnection (POI) at the Vasquez Substation. No alternative POI was requested. The generation facility would connect to the POI from the Customer's facility via an approximately 200 feet, Customer owned, 115kV line. It is assumed the new 115kV transmission line would be constructed utilizing a standard, single-circuit, wood H-frame design, with 336 kcmil ACSR "Linnet" conductor. Generation from the facility would supply PSCo native load Customers. The Customer has proposed a commercial operation date of December 31, 2019, with an assumed back-feed (for site energization) date of June 30, 2019.

This generator interconnection request was studied as a stand-alone project only. All generation interconnection requests at a higher position in PSCo's "Generation Interconnection Request" Queue, other than those Generator Interconnection projects that are already planned to be in service by December, 2019, were not modeled.

II. Study Scope and Analysis

The main purpose of this Feasibility Study is to evaluate the potential impact on the PSCo transmission infrastructure as well as that of neighboring utilities, when injecting 30 MW of generation at the Customer requested POI, and delivering the additional generation to PSCo native loads. Results of the study analysis will determine whether or not the interconnection of GI-2016-30 to the transmission system is feasible, and if deemed feasible, the "good faith estimate" of the costs necessary for interconnection.

PSCo conducted a Feasibility Study analysis for the interconnection of the 30 MW photovoltaic generation facility. Both a steady-state power flow and a short-circuit analysis were performed. The power flow analysis provided a preliminary identification of thermal and/or voltage limit violations resulting from the interconnection, while the short-circuit analysis identified any circuit breaker and other system protection element capability limitations.

PSCo adheres to NERC/WECC Reliability Criteria, as well as internal Company criteria for planning studies. During system intact conditions, transmission system bus voltages are to be maintained between 0.95 and 1.05 per-unit of system nominal / normal conditions, and steady state power flows within 1.0 per-unit (100%) of all elements thermal (continuous current or MVA) ratings. Operationally, PSCo tries to maintain a transmission system voltage profile ranging from 1.02 per-unit or higher at generation buses, to 1.0 per-unit or higher at transmission load buses. Following contingency element outages, transmission system steady state bus voltages must remain within 0.90 per-unit to 1.10 per-unit, and power flows within 1.0 per-unit (100%) of the element's continuous thermal ratings. For this project no potential affected parties have been identified.

III. Power Flow Study Models

A 2022 Heavy Summer (HS) WECC approved was used to simulate the benchmark case. This benchmark case scenario was used to analyze the impacts when adding GI-2016-30 to the transmission system at the existing Vasquez Substation.

The generation facility was connected to the POI from the Customer's facility via an approximately 200 feet, Customer owned, 115kV line. It is assumed the new 115kV transmission line will be constructed utilizing a standard, single-circuit, wooden H-frame design, with 336 kcmil ASCR "Linnet" conductor. Generation from the facility was supplied to PSCo native load Customers. The generation sink was set to Comanche Unit 2 (area swing).

The proposed generation project was modeled as a single, lumped, generation unit representing the 30 MW photovoltaic collector system. The generator was assumed to have a capability range of +/- 0.95 power factor. The generator was modeled with a terminal voltage of 115kV and was connected directly to the 115kV transmission system. No step-up transformation was used

in the power flow model. For modeling purposes, the generator was set to control the interconnecting bus voltage on the 115kV system to 1.00 per-unit.

Automated single contingency power flow studies were completed on the benchmark and GI-2016-30 addition case models, switching out single elements (lines, transformers and generation units) one at a time in the study area. In addition, some select multiple contingency outages were simulated for this area of the system. The study results from the contingency analyses were compared to identify thermal or voltage limit violations resulting from the addition of GI-2016-30.

IV. Stand Alone Study Results (PSCo)

Power Flow Analysis

As a result of the addition of the generation facility GI-2016-30 at the primary POI, no transmission elements were overloaded, and no voltage issues were observed other than those that were already present in the benchmark case. Therefore, this study indicates that the interconnection of GI-2016-30 to the PSCo transmission network is feasible.

Appendix A shows a complete comparison table of the system intact (N-0), single contingency (N-1) and select multiple contingency overloads.

Appendix B shows a complete comparison table of the bus voltage violations.

Short Circuit Analysis Results

A short circuit analysis was performed by simulating both a single line to ground and bolted three phase fault. The short circuit analysis assumed a 200 feet 115kV line from the Vasquez 115kV Substation to the Customer's facility, a 35 MVA step-down transformer at the Customer's facility with a wye-grounded high-side, wye-grounded low-side, and impedance of 8.5%, with an X/R ratio of 18.

Results of the breaker duty study showed no circuit breakers over-duty due to the addition of the new generation facility and no breaker replacements are needed at Vasquez Substation or at neighboring substations. Table 1 below shows the estimated fault currents at the Vasquez Substation due to the addition of GI-2016-30.

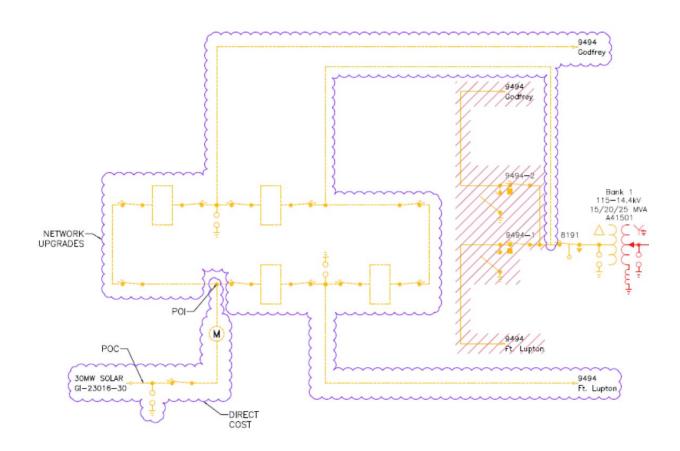


Table 1. Results of Short Circuit Analysis

	Without Proposed	With Proposed
	Generation	Generation
Three Phase Current	9431A	10027A
Single Line to Ground Current	6656A	7724A
Positive Sequence Impedance	1.355+j6.909 ohms	1.355+j6.909 ohms
Negative Sequence Impedance	1.359+j6.910 ohms	1.359+j6.910 ohms
Zero Sequence Impedance	3.592+j15.434 ohms	3.108+j14.245 ohms

Engineering Preliminary One-line

An engineering preliminary marked up one-line of the new GI-2016-30 primary POI at the Vasquez 115kV Substation detailing the Interconnection and Delivery is shown below in Figure 2.

VI. Cost Estimates and Assumptions

Indicative level cost estimates (with no implied accuracy) were developed only for the primary POI. No network/infrastructure upgrades for delivery were identified. These estimates for Interconnection Facilities for Delivery were developed by Public Service Company of Colorado (PSCo)/Xcel Energy (Xcel) Engineering. The cost estimates are in 2017 dollars with escalation and contingency factors are included. AFUDC¹ is not included in the estimates. Estimates are developed assuming typical construction costs for previously completed projects. These estimates include all applicable labor and overheads associated with the siting support, engineering, design, material/equipment procurement, construction, testing and commissioning of these new substation and transmission line facilities. This estimate does not include the cost for any other Customer owned equipment and associated design and engineering.

The estimated total cost for the required upgrades for GI-2016-30 is \$9,135,000. These estimates do not include costs for any other Customer owned equipment and associated design and engineering. The following tables list the improvements required to accommodate the interconnection and the delivery of the Project generation output. The cost responsibilities associated with these facilities shall be handled as per current FERC guidelines. System improvements are subject to change upon a more detailed and refined design.

Table 2. PSCo Owned; Customer Funded Transmission Provider Interconnection Facilities

Element	Description	Cost Estimate (Millions)
PSCo's	Interconnect Customer to the Vasquez Sub 115kV bus.	\$0.800
Vasquez 115kV	The new equipment includes;	
Transmission	One (1) motor operated 115kV disconnect switch	
Sub Station	• Three (3) 115kV combination CT/PT metering units	
	 Power Quality Metering (115kV line from Customer) 	
	• Three (3) surge arresters	
	• Two (2) relay panels	
	Associated bus, wiring and equipment	
	Associated foundations and structures	
	Associated transmission line communications, relaying	
	and testing	

¹ AFUDC is "Allowance for Funds Used During Construction"

	Transmission line tap into substation. Conductor, hardware, and installation labor.	\$0.050
	Total Cost Estimate for PSCo-Owned, Customer-Funded Interconnection Facilities	\$0.850
Time Frame	Design, procure and construct	18 Months

Table 3. PSCo Owned; PSCo Funded Interconnection Network Facilities

Element	Description	Cost Estimate (Millions)
PSCo's Vasquez 115kV Transmission Sub Station	Interconnect Customer to the Vasquez Sub 115kV bus. The new equipment includes; • Four (4) 115kV circuit breaker • Ten (10) 115kV gang switches • Associated communications, supervisory and SCADA equipment • Associated line relaying and testing • Associated bus, miscellaneous electrical equipment, cabling and wiring • Associated foundations and structures • Associated road and site development, fencing and grounding Siting and Land Rights support for substation land acquisition and	\$8.200 \$0.085
Time Frame	Total Cost Estimate for PSCo-Owned, PSCo-Funded Interconnection Facilities Site, design, procure and construct	\$8.285

Table 4. PSCo Owned; Network Upgrades for Delivery

Element	Description	Cost Estimate (Millions)
NA	None identified Total Cost Estimate for PSCo Network Upgrades for Delivery	NA \$0
Duration	Design, procure, permit and construct Total Project Estimate	NA \$9.135

Cost Estimate Assumptions

- Indicative level project cost estimates (IE) for Interconnection Facilities were developed by PSCo Engineering. No level of accuracy is specified for IE's.
- Estimates are based on 2017 dollars (appropriate contingency and escalation applied).
- Allowance for Funds Used During Construction (AFUDC) has been excluded.
- Labor is estimated for straight time only no overtime included.
- Lead times for materials were considered for the schedule.
- All substation construction can be accomplished within PSCo's existing property boundaries. No additional land is required.
- PSCo (or it's Contractor) crews will perform all construction, wiring, testing and commissioning for PSCo owned and maintained facilities.
- The estimated time to design, procure and construct the interconnection facilities is approximately 18 months (after authorization to proceed has been obtained).
- Line and substation bus outages will be necessary during the construction period. Outage availability could potentially be problematic and extend requested backfeed date due.
- This project is completely independent of other queued projects and their respective ISD's.
- A CPCN will not be required for the interconnection facilities construction.
- Customer will string OPGW fiber into substation as part of the transmission line construction scope.
- The Customer will be required to design, procure, install, own, operate and maintain a Load Frequency/Automated Generation Control (LF/AGC) RTU at their Customer Substation. PSCo / Xcel will need indications, readings and data from the LFAGC RTU.
- Power Quality Metering (PQM) will be required on the Customer's 115kV line terminating into Vasquez Substation.

Appendix A: Thermal Overloads

System Intact (N-0) Overloads --- NONE

Contingency (N-1) Overloads

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E MON, APR 17 2017 9:58 PAGE 8 .

AC CONTINGENCY REPORT FOR 2 AC CONTINGENCY CALCULATION RUNS

CONTINGENCY CASE MONITORED BRANCHES LOADED ABOVE 100.0% OF RATING SET A - WORST CASE VIOLATIONS % LOADING VALUES ARE % MVA FOR TRANSFORMERS AND % CURRENT FOR NON-TRANSFORMER BRANCHES THRESHOLD FOR THE COUNT OF CONTINGENCIES CAUSING OVERLOADING IS 100.0% OF RATING SET A

X MONITORED ELEMENT -	х	 XI	ABELX	GI-2016- 30 BM.ac c	GI-2016- 30.acc
70023 ALLISON 115.0 70400 SODALAKE 115.0		SINGL1 42(1)	70045-702	103.7% 159MVA (1x)	103.7% 159MVA (1x)
70037 ARAP_B 115.0 70165 ENGLE3TP 115.0		SINGL1 83(1)	70463-704	107.2% 169MVA (1x)	107.1% 169MVA (1x)
70045 BANCROFT 115.0 70242 KENDRICK 115.0		 SINGL1 00(1)	70023-704	102.5% 159MVA (1x)	102.5% 159MVA (1x)
70059 BO_TERM 115.0 70444 VALMONT 115.0		SINGL1 44(1) 	70059-704	125.7% 153MVA (1x)	125.9% 153MVA (1x)
70073 CALIFOR 115.0 70108 CHEROKEE_S 115.0		SINGL1 76(1)	70108-702	106.5% 148MVA (2x)	106.8% 149MVA (2x)
70127 COORSREC 115.0 70191 FTLUPTON 115.0		SINGL1 44(1) 	70244-704	121.3% 146MVA (2x)	121.1% 146MVA (2x)
70162 EAST 115.0 70538 CHMBERS 115.0		SINGL1 38(1)	70537-705	120.3% 148MVA (1x)	121.2% 149MVA (1x)
70244 LAFAYETT 115.0 70444 VALMONT 115.0		SINGL1 91(1) 	70127-701	114.9% 137MVA (2x)	114.9% 137MVA (2x)
70310 PAWNEE 22.00 70311 PAWNEE 230.0		SINGL1 11(U2) 	70310-703	134.9% 491MVA (1x)	134.9% 491MVA (1x)

70310 PAWNEE 70311 PAWNEE	22.000 230.00 U2	SINGL1 70310-703 11(U1)	134.9% 491MVA (1x)	134.9% 491MVA (1x)
70463 WATERTON	115.00	SINGL1 70037-701	120.9%	120.9%
70483 MARTN1TP	115.00 1	65(1)	168MVA	168MVA
			(1x)	(1x)

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E MON, APR 17 2017 9:58 PAGE 9 .

AC CONTINGENCY REPORT FOR 2 AC CONTINGENCY CALCULATION RUNS

CONTINGENCY CASE MONITORED BRANCHES LOADED ABOVE 100.0% OF RATING SET A - WORST CASE VIOLATIONS % LOADING VALUES ARE % MVA FOR TRANSFORMERS AND % CURRENT FOR NON-TRANSFORMER BRANCHES THRESHOLD FOR THE COUNT OF CONTINGENCIES CAUSING OVERLOADING IS 100.0% OF RATING SET A

			GI-2016-	GI-2016-
			30 BM.ac	30.acc
X MONITORED	ELEMENTX	XLABELX	c	
73002 AIRPORT	115.00	P4_BREAKER_FAILU	106.9%	106.7%
73026 BOYD	115.00 1	RE_001	178MVA	177MVA
			(1x)	(1x)

CONTINGENCY LEGEND:			
< CONTINGENCY LABEL	ENTS		
SINGL1 70023-70400(1)	PEN LINE FROM BUS 70023 [ALLI	ISON 115.00] TO BUS 70400 [SODAL	AKE 115.00] CKT 1
SINGL1 70037-70165(1)	EN LINE FROM BUS 70037 [ARAF	P_B 115.00] TO BUS 70165 [ENGLE	3TP 115.00] CKT 1
SINGL1 70045-70242(1)	EN LINE FROM BUS 70045 [BANC	CROFT 115.00] TO BUS 70242 [KENDR	ICK 115.00] CKT 1
SINGL1 70059-70444(1)	EN LINE FROM BUS 70059 [BO_T	TERM 115.00] TO BUS 70444 [VALMO	NT 115.00] CKT 1
SINGL1 70108-70276(1)	EN LINE FROM BUS 70108 [CHER	ROKEE_S 115.00] TO BUS 70276 [MAPLE	TO1 115.00] CKT 1
SINGL1 70127-70191(1)	PEN LINE FROM BUS 70127 [COOR	RSREC 115.00] TO BUS 70191 [FTLUP	TON 115.00] CKT 1
SINGL1 70244-70444(1)	PEN LINE FROM BUS 70244 [LAFA	AYETT 115.00] TO BUS 70444 [VALMO	NT 115.00] CKT 1
SINGL1 70310-70311(U1)	PEN LINE FROM BUS 70310 [PAWN	NEE 22.000] TO BUS 70311 [PAWNE	E 230.00] CKT U1
SINGL1 70310-70311(U2)	PEN LINE FROM BUS 70310 [PAWN	NEE 22.000] TO BUS 70311 [PAWNE	E 230.00] CKT U2
SINGL1 70463-70483(1)	EN LINE FROM BUS 70463 [WATE	ERTON 115.00] TO BUS 70483 [MARTN	1TP 115.00] CKT 1
SINGL1 70537-70538(1)	EN LINE FROM BUS 70537 [FITZ	ZSMNS 115.00] TO BUS 70538 [CHMBE	RS 115.00] CKT 1
P4_BREAKER_FAILURE_001	PEN BRANCH FROM BUS 70470 [WE	ELD_PS 115.00] TO BUS 70471 [WEL	D_PS 230.00] CKT T2
	PEN LINE FROM BUS 73212 [WELD	D LM 230.00] TO BUS 70471 [WELD_	PS 230.00] CKT 1
	PEN LINE FROM BUS 73212 [WELD	D LM 230.00] TO BUS 73011 [AULT	230.00] CKT 1
	PEN LINE FROM BUS 73212 [WELD	D LM 230.00] TO BUS 73011 [AULT	230.00] CKT 2
	PEN LINE FROM BUS 73212 [WELD	D LM 230.00] TO BUS 73211 [WELD	LM 115.00] CKT 1
	PEN LINE FROM BUS 73212 [WELD	D LM 230.00] TO BUS 73211 [WELD	LM 115.00] CKT 3

Appendix B: Voltage Violations

Base Case Voltage --- NONE

Contingency (N-1) Voltage < 0.90pu --- NONE

Contingency (N-1) Voltage > 1.10pu

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E MON, APR 17 2017 9:58 PAGE 12 .

AC CONTINGENCY REPORT FOR 2 AC CONTINGENCY CALCULATION RUNS

GREELEY' CONTINGENCY CASE BUSES WITH VOLTAGE GREATER THAN 1.1000 - WORST CASE VIOLATIONS

		GI-2016-	GI-2016-	I
		30 BM.ac	30.acc	I
XX	XLABELX	С		I
				I
72208 DELCAMIN 69.000	SINGL1 73049-735	1.46939	1.46945	I
	01(1)	(734x)	(736x)	I
				i

CONTINGENCY LEGEND:

<----> CONTINGENCY LABEL ----> EVENTS

SINGL1 73049-73501(1) : OPEN LINE FROM BUS 73049 [DELCAMIN 115.00] TO BUS 73501 [RINNVALL 115.00] CKT 1

Contingency (N-1) Voltage Drop > 0.05pu

PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E MON, APR 17 2017 9:58 PAGE 14 .

AC CONTINGENCY REPORT FOR 2 AC CONTINGENCY CALCULATION RUNS

GREELEY' CONTINGENCY CASE BUSES WITH VOLTAGE DROP BEYOND 0.0500 - WORST CASE VIOLATIONS

x BUS	х	 XLABELX	GI-2016- 30 BM.ac c	GI-2016- 30.acc
70244 LAFAYETT	115.00	SINGL1 70244-704 44(1)	0.91635 (1x)	0.91822 (1x)
70263 LITTLET1	115.00	SINGL1 70463-704 83(1)	0.93224 (1x)	0.93236 (1x)
70279 MARTIN_1	115.00	SINGL1 70463-704	0.92347	0.92358

		83(1)	(1x)	(1x)
70483 MARTN1TP	115.00	SINGL1 70463-704 83(1)	0.92514 (1x)	0.92525 (1x)
70604 PARKWAY	115.00	SINGL1 70244-704 44(1)	0.93215 (1x)	0.93399 (1x)
72103 WRAY TAP	115.00	SINGL1 72103-732 23(1)	0.97958 (1x)	0.97962 (1x)
72107 SLATERTS	115.00	SINGL1 72107-730 48(1)	0.95361 (1x)	0.95370 (1x)
72208 DELCAMIN	69.000	SINGL1 72107-730 48(1)	1.36390 (2x)	1.36402 (2x)
73017 B.SANDY	115.00	SINGL1 73017-730 18(1)	0.95799 (1x)	0.95803 (1x)
73023 BIJOUTAP	115.00	SINGL1 73020-730 31(1)	0.96167 (1x)	0.96189 (1x)
73031 BRUSHTAP	115.00	SINGL1 73020-730 31(1)	0.95208 (1x)	0.95230 (1x)
73049 DELCAMIN	115.00	SINGL1 72107-730 48(1)	0.95617 (1x)	0.95626 (1x)
73305 EFMORGTP	115.00	SINGL1 73020-730 31(1)	0.95208 (2x)	0.95230 (2x)
73309 HENDERSON	115.00	SINGL1 73020-730 31(1)	0.95174 (2x)	0.95197 (2x)
73310 FME	115.00	SINGL1 73020-730 31(1)	0.95063 (2x)	0.95085 (2x)
73311 FMS	115.00	SINGL1 73020-730 31(1)	0.95380 (2x)	0.95402 (2x)

. PTI INTERACTIVE POWER SYSTEM SIMULATOR--PSS(R)E MON, APR 17 2017 9:58 PAGE 15 .

AC CONTINGENCY REPORT FOR 2 AC CONTINGENCY CALCULATION RUNS

'GREELEY' CONTINGENCY CASE BUSES WITH VOLTAGE DROP BEYOND 0.0500 - WORST CASE VIOLATIONS

X BUS -	x	 XLABELX	GI-2016- 30 BM.ac c	GI-2016- 30.acc	
73318 LIMON	115.00	 SINGL1 73017-730 18(1)	0.95624 (1x)	0.95628 (1x)	İ İ
73377 EXCEL	115.00	SINGL1 73020-730 31(1)	0.94994 (2x)	0.95016 (2x)	
73378 FMN	115.00	SINGL1 73020-730 31(1)	0.95208 (2x)	0.95230 (2x)	
73379 FMWEST	115.00	SINGL1 73020-730 31(1)	0.95381 (2x)	0.95403 (2x)	

CONTINGENCY LEGEND:

<	CONTINGENCY	LABEL	>	EVENTS

SINGL1	70244-70444(1)	:	OPEN	LINE	FROM	BUS	70244	[LAFAYETT	115.00]	TO	BUS	70444	[VALMONT	115.00]	CKT	1
SINGL1	70463-70483(1)	:	OPEN	LINE	FROM	BUS	70463	[WATERTON	115.00]	TO	BUS	70483	[MARTN1TP	115.00]	CKT	1
SINGL1	72103-73223(1)	:	OPEN	LINE	FROM	BUS	72103	[WRAY TAP	115.00]	TO	BUS	73223	[WRAY	115.00]	CKT	1
SINGL1	72107-73048(1)	:	OPEN	LINE	FROM	BUS	72107	[SLATERTS	115.00]	TO	BUS	73048	[DEL CTAP	115.00]	CKT	1
SINGL1	73017-73018(1)	:	OPEN	LINE	FROM	BUS	73017	[B.SANDY	115.00]	TO	BUS	73018	[B.SANDY	230.00]	CKT	1
SINGL1	73020-73031(1)	:	OPEN	LINE	FROM	BUS	73020	[BEAVERCK	115.00]	TO	BUS	73031	[BRUSHTAP	115.00]	CKT	1