

Interconnection Feasibility Study Report Request # GI-2013-7

140 MW Wind Generation Facility South of Spring Canyon

PSCo Transmission Planning November 8, 2013

Executive Summary

On September 12, 2013, Public Service Company of Colorado (PSCo) Transmission received a generation request to determine the feasibility of interconnecting a new 140 MW wind generation facility located approximately 29 miles south of the PSCo owned Spring Canyon Substation located in Logan County, Colorado. Generation from the new facility will be supplied to the Western Area Power Administration (WAPA) Balancing Authority (BA). The Customer requested a primary Point of Interconnection (POI) on the Spring Canyon – North Yuma 230 kV line near transmission structure 40.2, approximately 29 miles south of the Spring Canyon Substation. The Customer has decided not to study the initially requested alternative POI. Additionally, in order to accelerate the Feasibility Study, the Customer has agreed with the recommendation to forego the short-circuit analysis and project schedule as a part of the Feasibility Study; however, these will be studied by Tri-State Generation and Transmission (TSGT) in a future System Impact Study (SIS). The Customer has proposed a commercial operation date of December 15, 2014 with an assumed back-feed (for site energization) date of June 15, 2014. TSGT will confirm if the proposed dates are feasible in the SIS.

This request was studied as both an Energy Resource (ER)¹ and a Network Resource (NR)². The study included steady-state power flow analysis only, and did not include short-circuit or transient dynamic stability analysis. The request was studied as a standalone project only, with no evaluations made of other potential new generation requests that may exist in the Large Generator Interconnection Request (LGIR) queue, with the exception of generation in the region of study which is expected to be in service at the

¹ Energy Resource Interconnection Service (ER Interconnection Service) shall mean an Interconnection Service that allows the Interconnection Customer to connect its Generating Facility to the Transmission Provider's Transmission System to be eligible to deliver the Generating Facility's electric output using the existing firm or non-firm capacity of the Transmission Provider's Transmission System on an as available basis. Energy Resource Interconnection Service in and of itself does not convey transmission service.

² **Network Resource Interconnection Service** shall mean an Interconnection Service that allows the Interconnection Customer to integrate its Large Generating Facility with the Transmission Provider's Transmission System (1) in a manner comparable to that in which the Transmission Provider integrates its generating facilities to serve native load customers; or (2) in an RTO or ISO with market based congestion management, in the same manner as all other Network Resources. Network Resource Interconnection Service in and of itself does not convey transmission service.

time the new facility will be in service. This generation includes the existing Spring Canyon 60 MW wind generation facility and an additional 60 MW expansion at Spring Canyon designated under GI-2012-03, which is modeled on line and at or near maximum output. The main purpose of this Feasibility Study was to evaluate the potential impact on the PSCo transmission infrastructure as well as that of neighboring utilities, when injecting the new 140 MW of generation into the new POI Bus on the Spring Canyon – North Yuma 230 kV transmission line, and delivering the additional generation to the WAPA BA. Affects on other entities' nearby transmission systems will need to be analyzed by the affected parties.

A 2013 Heavy Summer (HS) Western Electricity Coordinating Council (WECC) case was used to conduct the study. This benchmark case scenario was used to analyze the impacts when adding GI-2013-7 to the existing transmission system. The generation dispatch for this benchmark case was adjusted to simulate high north-to-south flow levels across the TOT3 transfer path (1,340 MW). Wind generation at the existing Spring Canyon was modeled at 100%. In addition, the GI-2012-3 wind project at the Spring Canyon Substation was modeled in the benchmark base case. Single and double contingencies were applied.

Loss of the North Yuma - POI 230 kV line results in the Sidney 230/115 kV transformer overloading to 141.7% of its emergency thermal rating of 203 MVA. Currently there is an agreement which indicates the existing Spring Canyon facility must curtail its wind generation to 0 MW at Spring Canyon in the event either end of the North Yuma – Spring Canyon 230 kV line unintentionally opens. TSGT has indicated it will not permit curtailment of generation to be a mitigation solution to an N-1 overload of a TSGT transmission element. Therefore, when adding GI-2013-7 wind generation (140 MW), an operating procedure will not be allowed to mitigate overloads above the Sidney transformer's 203 MVA (continuous and emergency) rating. As a result, a new Sidney 230/115 transformer is required for this interconnection.

Furthermore, with addition of GI-2013-7, the Peetz - Sidney 115 kV and Peetz - Sterling 115 kV lines exceed their emergency thermal limit of 109 MVA by 105.1% and 106.6%, respectively with the Loss of the North Yuma - POI 230 kV line. These thermal overloads are a result of the GI-2013-7 project generation. As a result, both transmission lines will need to be upgraded (reconductored) to handle the additional power flow.

For the N-2 contingency and bus outage analysis, the North Yuma 230/115 kV transformer exceeded its emergency thermal limit by 107.5% for loss of the North Yuma - Story 345 kV line and North Yuma - Wray 230 kV line. As a result, an operating procedure is required for either reduction in generation, load or both. If an operating procedure is not possible, a new North Yuma 230/115 transformer is required for this interconnection.

Loss of Craig - Ault 345 kV line and North Park - Terry Ranch 230 kV line, the McKenzie - Marys Lake 69 kV line exceeds its thermal limit of 33 MVA by 100.6%. In addition, the Mary's Lake 115/69 kV transformer exceeds its emergency thermal limit of 25 MVA by 136.7%. These thermal overloads are a result of replacing Craig generation with the project generation. As a result, these thermal overloads will not be mitigated by the project.

Low voltage violations (below 0.90 per unit) were observed for N-1 and N-2 contingencies. However, they were negligible with addition of the Project.

Energy Resource (ER)

ER = 0 MW

Network Resource (NR)

NR = 0 MW

Interconnection to the PSCo network is feasible however, firm capacity is not available due to existing firm transmission commitments, and is not possible without the construction of network reinforcements. Non-firm transmission capability may be available depending on marketing activities, dispatch patterns, generation levels, demand levels, import path levels (TOT 3, etc.) and the operational status of transmission facilities.

The cost for the transmission interconnection (in 2013 dollars):

The total estimated cost of the recommended system upgrades to interconnect the project is approximately **\$ 25,500,000** and includes:

- \$ 5,000,000 for PSCo-Owned, Customer-Funded Interconnection Facilities
- \$ 0 for PSCo-Owned, PSCo-Funded Network Upgrades for Interconnection
- \$ 20,500,000 for Non-PSCo Network Upgrades for Delivery

A partial one-line of the new GI-2013-7 POI Substation detailing the Interconnection and Delivery is shown in Figure 1.

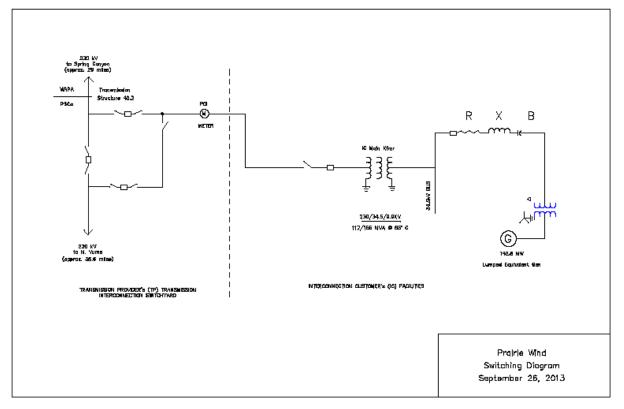


Figure 1: Proposed GI-2013-7 One-Line Diagram

Introduction

Public Service Company of Colorado (PSCo) Transmission Planning received a generation request on September 12, 2013, to determine the feasibility of interconnecting a new 140 MW wind generation facility interconnecting to the Spring Canyon – North Yuma 230kV line approximately 29 miles south of the PSCo owned Spring Canyon Substation. The Customer's project facility would consist of 84 GE 1.7 MW wind turbines and would be located in Logan County, Colorado, bounded by County Road 46 on the north, US Highway 6 on the south, County Road 69 on the west, and County Road 89 on the east. Generation from the expansion will be supplied to the WAPA BA.

Initially, the Customer requested two POI's; a primary POI located in Logan County, Colorado near transmission structure 40.2 via a 230 kV switching station that segments the Spring Canyon – North Yuma 230 kV transmission line, and an alternative POI at the existing PSCo Spring Canyon Substation. The Customer has decided to study the primary POI only; therefore the alternative POI was not studied. In addition, in order to accelerate the Feasibility Study, the Customer has agreed with the recommendation to forego the short-circuit analysis and project schedule as a part of the Feasibility Study. Furthermore, upon completion of the Feasibility Study, the Customer plans to withdraw this study request from the PSCo queue and enter into the TSGT project queue. The short-circuit analysis and project schedule will be studied by Tri-State Generation and Transmission (TSGT) in a future System Impact Study (SIS).

The Customer has proposed a commercial operation date of December 15, 2014 with an assumed back-feed (for site energization) date of June 15, 2014. Because the Customer has agreed to postpone the project schedule until the SIS, TSGT will confirm whether or not the proposed dates are feasible during the SIS.

The Customer has requested that this project be evaluated as both an Energy Resource (ER) and a Network Resource (NR).

Study Scope and Analysis

PSCo conducted a Feasibility Study Analysis for the interconnection of a 140 MW wind generation facility. Only a power flow analysis was studied. The power flow analysis provided a preliminary identification of thermal and/or voltage limit violations resulting from the interconnection.

PSCo adheres to NERC / WECC Reliability Criteria, as well as internal Company criteria for planning studies. During system intact conditions, transmission system bus voltages are to be maintained between 0.95 and 1.05 per-unit of system nominal / normal conditions, and steady state power flows within 1.0 per-unit of all elements thermal (continuous current or MVA) ratings. Operationally, PSCo tries to maintain a transmission system voltage profile ranging from 1.03 per-unit or higher at generation buses, to 1.0 per-unit or higher at transmission load buses. Following a single contingency element outage, transmission system steady state bus voltages must remain within 0.90 per-unit to 1.05 per-unit, and power flows within 1.0 per-unit of the elements continuous thermal ratings.

For this project, potential affected parties include Western Area Power Administration (WAPA) and Tri-State Generation & Transmission (TSGT). PSCo has coordinated and cooperated on its study assessment through e-mail and phone correspondence and has also forwarded a copy of this feasibility study report to the affected parties.

Power Flow Study Models

A 2013 Heavy Summer (HS) Western Electricity Coordinating Council (WECC) case was modified to reflect topological, loading and generation changes as discussed with the affected parties and the Customer. This benchmark case scenario was used to analyze the impacts when adding GI-2013-7 to the existing transmission system. Automated contingency power flow studies were completed on all case models, switching out single elements (lines and transformers) one at a time in the study area. In addition, double contingency and bus outages were simulated for this area of the system. Results from the contingency analyses were compared to identify thermal or voltage limit violations resulting from the addition of GI-2013-7.

Generation dispatch in area 70 (PSCo) for the benchmark case was adjusted to simulate high north-to-south flow levels across the TOT3 transfer path. The TOT3 interface flow was set to 1340 MW. Manchief units 1 and 2, Ft. St. Vrain units 5 and 6, and UNC units 1, 2 and 3 were each set off-line, while the Rawhide units A, B and D were turned on.

The GI-2012-3 wind project (60 MW expansion) at Spring Canyon Substation was modeled in the benchmark base case.

PSCo control area (Area 70) wind generation facilities near Pawnee, and the Peetz Logan and Cedar Creek facilities were dispatched at approximately 21% of their respective ratings. Wind generation at Missile Site and the Spring Canyon facility were modeled at 100%. Additionally, a sensitivity analysis was conducted with the Ridgecrest generation; initially modeling it at 21% output and then at 100% output.

Tri-State's Burlington generation Units 1 and 2 were modeled at 50 MW each, Limon generation Units 1 and 2 68 MW each and Kit Carson at 51 MW.

A complete list of the generation facilities for each of the models in area 70 (PSCo) and area 73 (WAPA) is presented in Table A1 in the Appendix.

The proposed generation project, as modeled, consists of one lumped generation unit representing the 84 individual GE 1.7 MW wind turbines with a reactive capability of 0.98 lead/lag power factor. The generator has a terminal voltage of 34.5 kV and is connected to the 230 kV system through one 230/34.5/9.9 kV transformer with a rating of 117/155 MVA.

The new substation is modeled 29 miles south of the Spring Canyon 230kV substation on the Spring Canyon – North Yuma 230kV line. For modeling purposes, the generator was set to control the bus voltage on the facility's 34.5 kV bus to 1.030 per-unit.

A single-line diagram showing the transmission system model with high TOT3 flows is presented as Figure B1 in the Appendix. Figure B2 in the Appendix indicates the flows with the addition of the GI-2012-3 project.

Stand Alone Power Flow Results (PSCo)

ER = 0 MW

NR = 0 MW

Interconnection to the PSCo network is feasible however, firm capacity is not available due to existing firm transmission commitments, and is not possible without the construction of network reinforcements. Non-firm transmission capability may be available depending on marketing activities, dispatch patterns, generation levels, demand levels, import path levels (TOT 3, etc.) and the operational status of transmission facilities.

With addition of GI-2013-7, the Peetz - Sidney 115 kV and Peetz - Sterling 115 kV lines exceed their emergency thermal limit of 109 MVA by 105.1% and 106.6%, respectively. These thermal overloads are caused by the addition of the GI-2013-7 project generation. As a result, both transmission lines will need to be upgraded (reconductored) to handle the additional power flow for loss of the North Yuma - POI 230 kV line contingency.

Loss of the North Yuma - POI 230 kV line also results in the Sidney 230/115 kV transformer overloading to 141.7% of its emergency thermal rating of 203 MVA. Currently there is an agreement which indicates the existing Spring Canyon facility must curtail its wind generation to 0 MW at Spring Canyon in the event either end of the North Yuma – Spring Canyon 230 kV line unintentionally opens. TSGT has indicated it will not permit curtailment of generation to be a mitigation solution to an N-1 overload of a TSGT transmission element. Therefore, when adding GI-2013-7 wind generation (140 MW), the operating procedure will not be allowed to mitigate overloads above the Sidney transformer's 203 MVA (continuous and emergency) rating. <u>As a result, a new Sidney 230/115 transformer is required for this interconnection.</u>

For the N-2 contingency and bus outage analysis, the North Yuma 230/115 kV transformer exceeded its emergency thermal limit by 107.5% for loss of the North Yuma - Story 345 kV line and North Yuma - Wray 230 kV line. As a result, an operating procedure is required for either reduction in generation, load or both. If an operating procedure is not possible, a new North Yuma 230/115 transformer is required for this interconnection.

Loss of Craig - Ault 345kV line and North Park - Terry Ranch 230 kV line, the McKenzie - Marys Lake 69 kV line exceeds its thermal limit of 33 MVA by 100.6%. In addition, the Mary's Lake 115-69 kV transformer exceeds its emergency thermal limit of 25 MVA by 136.7%. These thermal overloads are a result of replacing Craig generation with the project generation. As a result, these thermal overloads will not be mitigated by the project.

Low voltage violations (below 0.90 per unit) were observed at the Dalton, Sidney and Greenwood 115 kV busses for loss of the Sidney 230/115 kV transformer; however, the impact from the GI-2013-7 project is negligible. A number of low voltage violations were observed for the N-2 contingency results; however, the impact was negligible. Results from the contingency analysis can be seen below in Table 1 and 2.

					hmark ed Case	Stressed with GI-2013-7	
Contingency	Monitored Element	Normal Rating (MVA)	Emergency Rating (MVA)	Flow (MVA)	Percent Loading	Flow (MVA)	Percent Loading
N.Yuma (73143) -	Peetz (73150) -						
POI_GI2013-7 (73720) 230kV Line†	Sidney (73179) 115kV Line	109	109	90	83	116	105.1
N.Yuma (73143) - POI_GI2013-7 (73720) 230kV Line†	Peetz (73150) - Sterling (73191) 115kV Line	109	109	91	84.4	115	106.6
N.Yuma (73143) - POI_GI2013-7 (73720) 230kV Line†	Sidney (73179) 115 - Sidney (73180) 230kV Transformer	203	203	232	114.4	288	141.7
Spring Canyon (73579) - POI_GI2013-7 (73720) 230kV line†	Sidney (73179) 115 - Sidney (73180) 230kV Transformer	203	203	232	114.4	227	111.9
Didn't exceed thermal limit, but above	95% of thermal rating.						
Archer (73009) - Stegall (73190) 230kV Line	Sidney (73179) 115 - Sidney (73180) 230kV Transformer	203	203	167	82.5	195	95.9
Ault (73012) -	Sidney (73179) 115 -	205	205	107	02.5	155	55.5
Lar.River (73108) 345kV Line	Sidney (73180) 230kV Transformer	203	203	172	84.5	199	98.2
Ault (73012) - Lar.River (73108) 345kV Line	Archer (73009) - Stegall (73190) 230kV Line	459	459	423	92.1	440	95.9
Contingency	Monitored Element				Voltage (pu)		Voltage (pu)
Sidney (73179) 115 -							
Sidney (73180) 230kV Transformer	Dalton 115kV (73046)				0.89296		0.89028
Sidney (73179) 115 -							
Sidney (73180) 230kV Transformer	Sidney 115kV (73179)				0.8948		0.89219
Sidney (73179) 115 - Sidney (73180) 230kV Transformer	Greenwood 115kV (73236)				0.9012		0.89847

Table 1: N-1 Contingency Analysis for GI-2013-7

† Pre-Project loading is based on Loss of the Spring Canyon - N.Yuma 230kV line.

7	Table 2: N-2 Contingency Analysis for GI-2013-7					
Benchmark						

					chmark ed Case		ed with 013-7
Contingency	Monitored Element	Normal Rating (MVA)	Emergency Rating (MVA)	Flow (MVA)	Percent Loading†	Flow (MVA)	Percent Loading
22-N.Yuma (73143) - Story (73192) 230kV &	N.Yuma (73142) 115-						
N.Yuma (73143) - Wray (73224) 230kV line	N.Yuma (73143) 230kV Tran	167	167	133	79.4	180	107.5
10-N.Yuma (73143)-N.Yuma (73142) 230-115kV Tran	Sidney (73179) 115 -						
N.Yuma (73143)-POI_GI2013-7 (73720) 230kV line†	Sidney (73180) 230kV Tran	203	203	234	115.1	289	142.3
11-N.Yuma (73143)-Wray (73224) 230kV line &	Sidney (73179) 115 -						
SprCanyon-POI_GI2013-7 (73720) 230kV line+	Sidney (73180) 230kV Tran	203	203	234	115.1	289	142.3
21-N.Yuma (73143) - Story (73192) 230kV &	Sidney (73179) 115 -						
N.Yuma (73143) - N.Yuma (73142) 230-115kV Tran	Sidney (73180) 230kV Tran	203	203	167	82.4	208	102.4
22-N.Yuma (73143) - Story (73192) 230kV &	Sidney (73179) 115 -						
N.Yuma (73143) - Wray (73224) 230kV line	Sidney (73180) 230kV Tran	203	203	167	82.1	206	101.6
	Sidney (73179) 115 -						
33 - Bus Outage: Stegall (73190) 230kV Bus	Sidney (73180) 230kV Tran	203	203	174	85.8	215	106.1
	Sidney (73179) 115 -						
34 - Bus Outage: Stegall (73189) 115kV Bus	Sidney (73180) 230kV Tran	203	203	227	111.7	242	119.4
4-Craig (79014) - Ault (73012) 345kV line &	McKenzie (73132) -						
Npark (73616) - Terry Ranch (73488) 230kV line	MaryslkSB (73436) 69kV Line	33	33	29	86.4	34	100.6
4-Craig (79014) - Ault (73012) 345kV line &	Marylksb (73232) 115 -						
Npark (73616) - Terry Ranch (73488) 230kV line	Marylksb (73436) 69kV Tran	25	25	29	117.4	34	136.7
5-Craig (79014) - Ault (73012) 345kV line &	Marylksb (73232) 115 -						
Ault (73012) - Ault (73011) 345-230kV Tran	Marylksb (73436) 69kV Tran	25	25	26	105.1	30	120.2
15-Story (73192) - Pawnee (70311) 230kV line &	Marylksb (73232) 115 -						
Story (73193) - Story (73192) 345-230kV Tran	Marylksb (73436) 69kV Tran	25	25	22	89	25	101.6
28-Story (73192) - Pawnee (70311) 230kV line &	Marylksb (73232) 115 -						
Story (73192) - B.Ck Tri (73016) 230kV Line	Marylksb (73436) 69kV Tran	25	25	22	89.1	25	101.6
	Marylksb (73232) 115 -						
37 - Bus Outage: Sterling (73191) 115kV Bus	Marylksb (73436) 69kV Tran	25	25	22	89.4	25	101.7
10-N.Yuma (73143)-N.Yuma (73142) 230-115kV Tran	Peetz (73150) -						
N.Yuma (73143)-POI_GI2013-7 (73720) 230kV line†	Sidney (73179) 115kV Line	109	109	92	84.7	118	106.6
11-N.Yuma (73143)-Wray (73224) 230kV line &	Peetz (73150) -						
SprCanyon-POI_GI2013-7 (73720) 230kV line†	Sidney (73179) 115kV Line	109	109	92	84.7	118	106.6
10-N.Yuma (73143)-N.Yuma (73142) 230-115kV Tran	Peetz (73150) -	4.00	100	~ ~	0.5.4		100.1
N.Yuma (73143)-POI_GI2013-7 (73720) 230kV line†	Sterling (73191) 115kV Line	109	109	94	86.1	116	108.1
11-N.Yuma (73143)-Wray (73224) 230kV line &	Peetz (73150) -	4.00	100	~ ~	0.5.4		100.1
SprCanyon-POI_GI2013-7 (73720) 230kV line*	Sterling (73191) 115kV Line	109	109	94	86.1	116	108.1
Didn't exceed thermal limit, but above 95% of thermal	I rating.						
13-Ault (73012) - Lar.River (73108) 345kV Line &	Archer (73009) -						
Ault (73012) - Ault (73011) 345-230kV Tran	Stegall (73190) 230kV Line	459	459	423	92.1	432	97
24-Lar.River (73107) - Stegall (73190) 230kV &	Sidney (73179) 115 -						
Stegall (73190) - Sidney (73180) 230kV line	Sidney (73180) 230kV Tran	203	203	152	75	195	96
13-Ault (73012) - Lar.River (73108) 345kV Line &	Sidney (73179) 115 -						
Ault (73012) - Ault (73011) 345-230kV Tran	Sidney (73180) 230kV Tran	203	203	172	84.5	199	98.2
	Sidney (73179) 115 -						
30 - Bus Outage: Archer (73009) 230kV Bus	Sidney (73180) 230kV Tran	203	203	149	73.4	197	96.9

Table 2 (Continued): N-2 Contingency Analysis for GI-2013-7

Contingency	Monitored Element	Voltage (pu)	Voltage (pu)
33 - Bus Outage: Stegall (73190) 230kV Bus	TORRNGTN 115.00 (73202)	0.84882	0.85268
33 - Bus Outage: Stegall (73190) 230kV Bus	WILDCAT 115.00 (73214)	0.85748	0.85967
33 - Bus Outage: Stegall (73190) 230kV Bus	GERING 115.00 (73067)	0.86169	0.86366
33 - Bus Outage: Stegall (73190) 230kV Bus	LYMAN 115.00 (73126)	0.85999	0.86379
33 - Bus Outage: Stegall (73190) 230kV Bus	LYMANTP 115.00 (73256)	0.86019	0.86399
33 - Bus Outage: Stegall (73190) 230kV Bus	EMIGRANT 115.00 (73365)	0.86194	0.86411
33 - Bus Outage: Stegall (73190) 230kV Bus	STEGALL 115.00 (73189)	0.86381	0.86602
33 - Bus Outage: Stegall (73190) 230kV Bus	LINGLE 115.00 (73112)	0.87495	0.87954
33 - Bus Outage: Stegall (73190) 230kV Bus	LINGLETP 115.00 (73255)	0.87729	0.88187
33 - Bus Outage: Stegall (73190) 230kV Bus	MCGREW 115.00 (73131)	0.88414	0.88505
33 - Bus Outage: Stegall (73190) 230kV Bus	GLENDO1 6.9000 (73351)	0.88701	0.89095
33 - Bus Outage: Stegall (73190) 230kV Bus	LAGRANGE 115.00 (73104)	0.89378	0.89422
33 - Bus Outage: Stegall (73190) 230kV Bus	WHTROCK 115.00 (73568)	0.89187	0.89675
33 - Bus Outage: Stegall (73190) 230kV Bus	WHTROCK 34.500 (73569)	0.89187	0.89675
34 - Bus Outage: Stegall (73189) 115kV Bus	WILDCAT 115.00 (73214)	0.73391	0.73327
34 - Bus Outage: Stegall (73189) 115kV Bus	EMIGRANT 115.00 (73365)	0.73918	0.73854
34 - Bus Outage: Stegall (73189) 115kV Bus	GERING 115.00 (73067)	0.74575	0.74512
34 - Bus Outage: Stegall (73189) 115kV Bus	MCGREW 115.00 (73131)	0.78236	0.78177
34 - Bus Outage: Stegall (73189) 115kV Bus	BRIDGEPT 115.00 (73029)	0.83631	0.83578
34 - Bus Outage: Stegall (73189) 115kV Bus	GREENWOD 115.00 (73236)	0.87538	0.8749
36 - Bus Outage: Sidney (73180) 230kV Bus	DALTON 115.00 (73046)	0.88422	0.88544
36 - Bus Outage: Sidney (73180) 230kV Bus	SIDNEY 115.00 (73179)	 0.88834	0.88904
36 - Bus Outage: Sidney (73180) 230kV Bus	GREENWOD 115.00 (73236)	 0.8905	0.89204
36 - Bus Outage: Sidney (73180) 230kV Bus	BRIDGEPT 115.00 (73029)	0.89744	0.89908

† Pre-Project loading is based on Loss of the Spring Canyon - N.Yuma 230kV line.

For the sensitivity analysis the Ridgecrest generation modeled at its full output of 29.7 MW (core study had it modeled at 6.3MW). This analysis identified that with higher Ridgecrest generation, the thermal overload on the Peetz - Sidney 115 kV line is reduced from 105.1% to 92.1%. Also, the thermal overload on the Peetz - Sterling 115 kV line increases from 106.6% to 116% of its emergency thermal limit.

Loss of the Ault - Laramie River 345 kV line results in the Archer - Stegall 230 kV line loading to 95.9% of its 459 MVA rating. With maximum Ridgecrest generation, the Archer - Stegall 230 kV line increases to 98%.

With maximum Ridgecrest generation, the Sidney 230 -115 kV transformer loading is reduced from 141.7% to 138% for loss of the North Yuma - POI 230 kV line.

In summary, the higher Ridgecrest generation does not mitigate all thermally overloaded elements during all system conditions. However, the sensitivity results identify that the Ridgecrest generation affect the thermal loading for identified elements in Tables 1 and 2.

Short Circuit Study Results

The Customer is in agreement with the recommendation that the short-circuit analysis will not be completed as a part of the Feasibility Study; however, it will be studied by TSGT in the SIS.

Costs Estimates and Assumptions

The estimated total cost for the required upgrades for is **\$25,500,000** and includes the labor materials and overhead associated with adjusting the existing metering to accommodate the Project. The estimated costs shown are a non binding, good faith estimate, estimated in 2013 dollars (no escalation applied) and are based upon typical construction costs for previously performed similar construction. These estimated costs include all applicable labor and overheads associated with the siting, engineering, design, procurement and construction of these new facilities. This estimate does not include the cost for any other Customer owned equipment and associated design and engineering. The following table lists the improvements required to accommodate the interconnection and the delivery of the Project. The cost responsibilities associated with these facilities shall be handled as per current FERC guidelines. System improvements are subject to change upon more detailed analysis.

Table 3: Cost Estimates for GI-2013-7

Overloaded Element	Upgrade	Owner	Cost					
Sidney (73179) - Peetz (73150) 115kV Line								
Peetz (73150) - Sterling (73191) 115kV Line	Reconductor	WAPA	\$ 17,500,000					
Sidney (73179) 115 - Sidney (73180) 230kV Transformer	New Transformer	TSGT	\$ 3,000,000					
POI: New 3 Breaker Substation at Structure 40.2	New Substation	TSGT	\$ 5,000,000					
Total			\$25,500,000					

Assumptions for Alternatives

- Cost estimates for Interconnection Facilities and Network/Infrastructure Upgrades for Delivery were developed by PSCo Engineering staff.
- Estimates are based on 2013 dollars (appropriate contingency and escalation applied)
- Estimates are non binding, good faith estimates only
- AFUDC has been excluded.
- Engineering will be performed in house.
- Lead times for materials were considered for the schedule.
- The Generation Facility is <u>not</u> in PSCo's retail service territory.
- PSCo (or it's Contractor) crews will perform all construction, wiring, testing and commissioning for PSCo owned and maintained facilities.
- Construction labor is estimated for straight time only no overtime included.

- The estimated time to design, procure and construct the interconnection facilities is approximately 6 months after authorization to proceed has been obtained.
- Authorization to proceed is considered to be the execution of the LGIA.
- This project is completely independent of other queued projects and their respective ISD's.
- Line and substation bus outages will need to be authorized during the construction period to meet requested backfeed dates.

Project Schedule

The Customer is in agreement with the recommendation that the project schedule will not be completed as a part of the Feasibility Study; however, it will be studied by TSGT in the SIS. At that time TSGT will confirm whether or not the proposed dates are feasible for the project.

Appendix

A. Generation Dispatch

				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
70034	ARAP3 13.800	C3	48	40	40
70035	ARAP4 13.800	C4	118	98	98
70069	CABCRKA 13.800	HA	162	80	80
70070	CABCRKB 13.800	HB	162	80	80
70083	CANON_55 13.800	C1	18	14	14
70084	CANON_59 13.800	C1	24	20	20
70104	CHEROK2 15.500	SC	0	0	0
70105	CHEROK3 20.000	C3	150	161.89	164.33
70106	CHEROK4 22.000	C4	383	383	383
70119	COMAN_1 24.000	C1	360	355	355
70120	COMAN_2 24.000	C2	365	360	360
70133	CTY_LAM 13.800	G1	27	0	0
70135	CTY LAM 13.800	G2	17	0	0
70160	E_CANON 69.000	G1	8	0	0
70180	FRUITA 13.800	G1	17	0	0
70188	FTLUP1-2 13.800	G1	50	0	0
70188	FTLUP1-2 13.800	G2	50	0	0
70306	PP_MINE 69.000	G1	3	0	0
70310	PAWNEE 22.000	C1	530	505	505
70314	MANCHEF1 16.000	G1	140	0	0
70315	MANCHEF2 16.000	G2	140	0	0
70334	PUB_DSLS 4.1600	G1	10	0	0
70337	PUEBPLNT 14.000	G1	20	0	0
70337	PUEBPLNT 14.000	G2	9	0	0
70344	R.F.DSLS 4.1600	G1	10	8	8
70350	RAWHIDE 24.000	C1	304	300	300
70351	RAWHIDEA 13.800	GA	70	60	60
70385	SHOSHA&B 4.0000	H1	7	7	7
70385	SHOSHA&B 4.0000	H2	8	8	8
70406	ST.VR_2 18.000	G2	130	130	130
70407	ST.VR_3 18.000	G3	130	130	130
70408	ST.VR_4 18.000	G4	130	130	130
70409	ST.VRAIN 22.000	G1	342	300	300

Table A1: Generation Dispatch

Page 13 of 23

				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
70446	VALMONT 20.000	C5	188	160	160
70448	VALMONT6 13.800	G6	53	50	50
70479	ZUNI2S 13.800	G2	73	0	0
70485	ALMSACT1 13.800	G1	17	0	0
70486	ALMSACT2 13.800	G2	19	0	0
70487	QF_TC-T4 13.800	G4	33	33.7	33.7
70487	QF_TC-T4 13.800	G5	33	33.7	33.7
70490	QF_TC-T3 13.800	G3	33	33.7	33.7
70490	QF_TC-T3 13.800	ST	51	51.7	51.7
70493	QF_TI-T2 13.800	ST	51	0	0
70495	QF_TI-T1 13.800	G1	33	0	0
70495	QF_TI-T1 13.800	G2	33	0	0
70498	QF_BCP2T 13.800	G3	30	19.4	19.4
70498	QF_BCP2T 13.800	ST	36	19.3	19.3
70499	QF_B4-4T 13.800	G4	24	20	20
70499	QF_B4-4T 13.800	G5	25	20	20
70500	QF_CPP1T 13.800	G1	24	20	20
70500	QF_CPP1T 13.800	G2	24	20	20
70501	QF_CPP3T 13.800	ST	27	27	27
70502	QF_UNC 13.800	G1	29	0	0
70502	QF_UNC 13.800	G2	29	0	0
70502	QF_UNC 13.800	G3	17	0	0
70503	PONNEQUI 26.100	W1	30	6.3	6.3
70548	APT_DSLS	G1	10	0	0
70553	ARAP5&6 13.800	G5	37	0	0
70553	ARAP5&6 13.800	G6	37	0	0
70554	ARAP7 13.800	G7	45	0	0
70556	QF_B4D4T 12.500	ST	70	50	50
70557	VALMNT7 13.800	G7	37	0	0
70558	VALMNT8 13.800	G8	37	0	0
70560	LAMAR_DC 230.00	DC	210	101	101
70561	RAWHIDEF 18.000	GF	138	135	135
70562	SPRUCE1 18.000	G1	140	130	130
70563	SPRUCE2 18.000	G2	140	130	130
70565	BRTNNUG1 13.800	G1	64	35	35
70566	BRTNNUG2 13.800	G2	64	0	0
70567	RAWHIDED 13.800	GD	70	60	60
70568	RAWHIDEB 13.800	GB	70	60	60

				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Nam	e Id	(MW)	(MW)	(MW)
70569	RAWHIDEC 13	.800 GC	70	60	60
70577	FTNVL1&2 13.	800 G1	40	0	0
70577	FTNVL1&2 13.	800 G2	40	0	0
70578	FTNVL3&4 13.	800 G3	40	0	0
70578	FTNVL3&4 13.	800 G4	40	0	0
70579	FTNVL5&6 13.	800 G5	40	0	0
70579	FTNVL5&6 13.	800 G6	40	0	0
70580	PLNENDG1 13	800 G0	5.5	4.8	4.8
70580	PLNENDG1 13	800 G1	5.5	4.8	4.8
70580	PLNENDG1 13	800 G2	5.5	4.8	4.8
70580	PLNENDG1 13	800 G3	5.5	4.8	4.8
70580	PLNENDG1 13	800 G4	5.5	4.8	4.8
70580	PLNENDG1 13	800 G5	5.5	4.8	4.8
70580	PLNENDG1 13	800 G6	5.5	4.8	4.8
70580	PLNENDG1 13	800 G7	5.5	4.8	4.8
70580	PLNENDG1 13	800 G8	5.5	4.8	4.8
70580	PLNENDG1 13	800 G9	5.5	4.8	4.8
70585	PLNENDG3 13	800 G1	8.4	7.2	7.2
70585	PLNENDG3 13	800 G2	8.4	7.2	7.2
70585	PLNENDG3 13	800 G3	8.4	7.2	7.2
70585	PLNENDG3 13	800 G4	8.4	7.2	7.2
70585	PLNENDG3 13	800 G5	8.4	7.2	7.2
70585	PLNENDG3 13	800 G6	8.4	7.2	7.2
70585	PLNENDG3 13	800 G7	8.4	7.2	7.2
70586	PLNENDG4 13	800 G1	8.4	7.2	7.2
70586	PLNENDG4 13	800 G2	8.4	7.2	7.2
70586	PLNENDG4 13	.800 G3	8.4	7.2	7.2
70586	PLNENDG4 13	800 G4	8.4	7.2	7.2
70586	PLNENDG4 13	800 G5	8.4	7.2	7.2
70586	PLNENDG4 13	.800 G6	8.4	7.2	7.2
70586	PLNENDG4 13	800 G7	8.4	7.2	7.2
70587	PLNENDG2 13	800 G0	5.5	4.8	4.8
70587	PLNENDG2 13	.800 G1	5.5	4.8	4.8
70587	PLNENDG2 13	.800 G2	5.5	4.8	4.8
70587	PLNENDG2 13	800 G3	5.5	4.8	4.8
70587	PLNENDG2 13	.800 G4	5.5	4.8	4.8
70587	PLNENDG2 13	.800 G5	5.5	4.8	4.8
70587	PLNENDG2 13	.800 G6	5.5	4.8	4.8

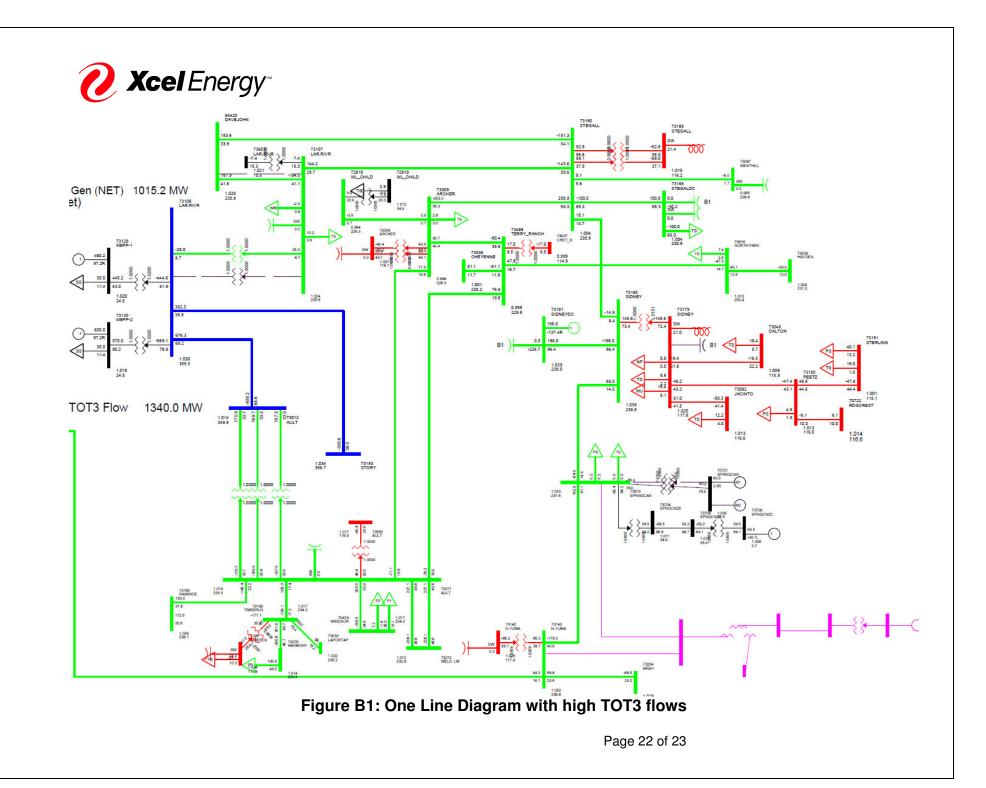
Page 15 of 23

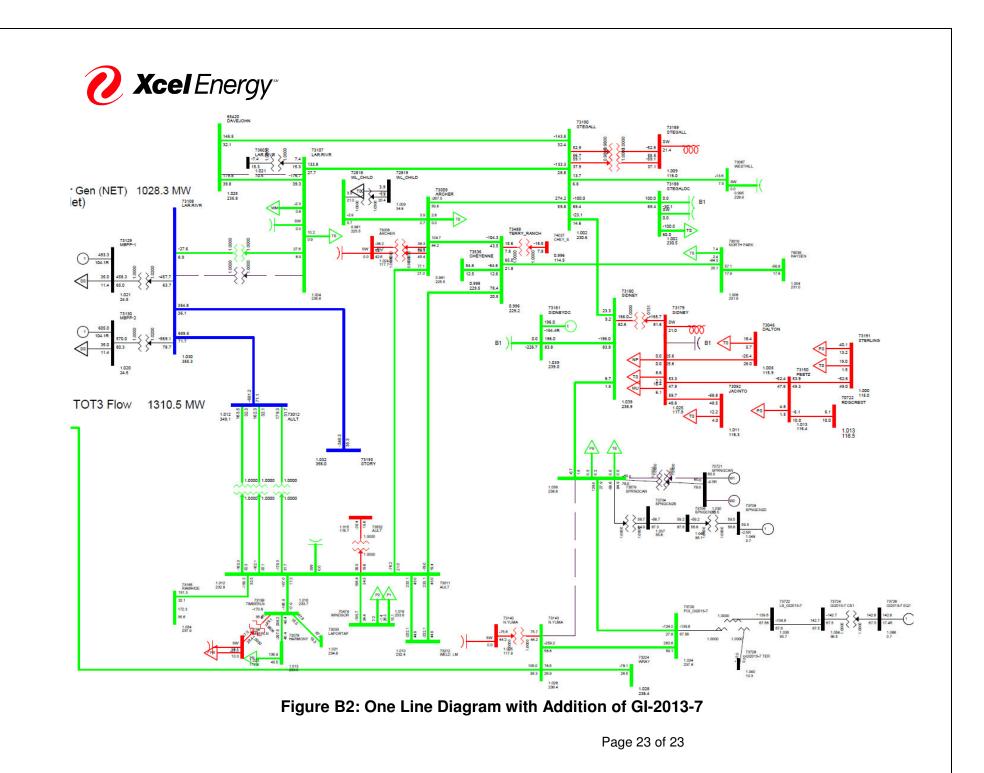
				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
70587	PLNENDG2 13.800	G7	5.5	4.8	4.8
70587	PLNENDG2 13.800	G8	5.5	4.8	4.8
70587	PLNENDG2 13.800	G9	5.5	4.8	4.8
70588	RMEC1 15.000	G1	142	142	142
70589	RMEC2 15.000	G2	141	141	141
70591	RMEC3 23.000	G3	322	322	322
70593	SPNDLE1 18.000	G1	134	129	129
70594	SPNDLE2 18.000	G2	134	129	129
70622	MIS_SITE 34.500	W1	250	250	250
70625	MISSILEW2 34.500	W2	201	200	200
70626	MISSILEW3 34.500	W3	201	200	200
70701	CO_GRN_E 34.500	W1	81	17	17
70702	CO_GRN_W 34.500	W2	81	17	17
70703	TWNBUTTE 34.500	W1	75	15.8	15.8
70710	PTZLOGN1 34.500	W1	201	42.2	42.2
70712	PTZLOGN2 34.500	W2	120	25.2	25.2
70713	PTZLOGN3 34.500	W3	79.5	16.7	16.7
70714	PTZLOGN4 34.500	W4	175	36.8	36.8
70721	SPRNGCAN 34.500	W1	60	60	60
70721	SPRNGCAN 34.500	W2	60	0	0
70723	RDGCREST 34.500	W1	29.7	6.3	6.3
70777	COMAN_3 27.000	C3	805	400	400
70822	CEDARCK1 34.500	W1	150	31.5	31.5
70823	CEDARCK2 34.500	W2	150	31.5	31.5
70824	CEDAR3 34.500	W3	250	52.5	52.5
70931	GR_SANDH_PV 34.500	S1	17	9.98	9.98
70932	SOLAR_GE 34.500	S1	30	19.5	19.5
70933	COGENTIX_PV 34.500	S1	30	19.5	19.5
70950	ST.VR_5 18.000	G5	150	0	0
70951	ST.VR_6 18.000	G6	150	0	0
71001	BAC_MSA 13.800	G1	100	100	100
71002	BAC_MSA 13.800	G1	100	100	100
71003	BAC_MSA 13.800	G1	40	40	40
71003	BAC_MSA 13.800	G2	40	40	40
71003	BAC_MSA 13.800	S1	20	20	20
71004	BAC_MSA 13.800	G1	40	40	40
71004	BAC_MSA 13.800	G2	40	40	40
71004	BAC_MSA 13.800	S1	20	20	20

				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
71009	BUSCHRWTG1 0.7000	1	28.8	28.8	28.8
72714	KIT.CARSON 0.6900	G1	51	51	51
73054	ELBERT-1 11.500	1	100	99	99
73129	MBPP-1 24.000	1	605	480.187	493.2949
73130	MBPP-2 24.000	1	605	605	605
73181	SIDNEYDC 230.00	1	200	196	196
73226	YELLO1-2 13.800	1	62.5	62	62
73226	YELLO1-2 13.800	2	62.5	62	62
73227	YELLO3-4 13.800	3	62.5	62	62
73227	YELLO3-4 13.800	4	62.5	62	62
73285	BENFRNCH 13.800	1	22.5	0	0
73288	NSS1 13.800	1	18.6	18.6	18.6
73289	RCCT1 13.800	1	17	17	17
73291	RCCT2 13.800	2	17	17	17
73292	RCCT3 13.800	3	17	17	17
73293	RCCT4 13.800	4	17	1.4	1.4
73299	BIGTHOMP 4.2000	1	4.5	4	4
73302	BRLNGTN1 13.800	1	60.3	50	50
73303	BRLNGTN2 13.800	1	60.3	50	50
73306	ESTES1 6.9000	1	17	17	17
73307	ESTES2 6.9000	1	17	17	17
73308	ESTES3 6.9000	1	17	17	17
73312	GRANBYP1 6.9000	1	5	0	0
73313	GRANBYP2 6.9000	1	5	0	0
73314	GRANBYP3 6.9000	1	5	0	0
73316	GREENMT1 6.9000	1	13	13	13
73317	GREENMT2 6.9000	1	13	13	13
73319	MARYLKPP 6.9000	1	8.1	8	8
73320	NCWCD 13.800	1	36	0	0
73321	OSAGE1 11.500	1	11.5	0	0
73322	OSAGE2 11.500	2	11.5	0	0
73323	OSAGE3 11.500	3	11.5	0	0
73324	POLEHILL 13.800	1	38.2	36	36
73328	WILLMFRK 2.4000	1	3	2	2
73330	WILLOWCK 4.2000	1	4	0	0
73332	ALCOVA1 6.9000	1	20.7	21	21
73333	BOYSEN1 4.2000	1	7.5	7	7
73333	BOYSEN1 4.2000	2	7.5	7	7

Page 17 of 23

				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
73334	BBILL1-2 6.9000	1	6	5	5
73334	BBILL1-2 6.9000	2	6	5	5
73339	HEART MT 2.4000	1	5	5	5
73341	NSS2 13.800	2	93.7	93.7	93.7
73347	SHOSHONE 6.9000	1	3	2	2
73349	FREMONT1 11.500	1	33.4	29	29
73350	FREMONT2 11.500	1	33.4	29	29
73351	GLENDO1 6.9000	1	15	15	15
73352	GLENDO2 6.9000	1	15	15	15
73353	GUERNSY1 2.4000	1	3.2	2.5	2.5
73356	KORTES1 6.9000	1	12.2	12	12
73357	KORTES2 6.9000	1	12.2	12	12
73358	KORTES3 6.9000	1	12.2	12	12
73363	SEMINOE1-2 6.9000	1	13.3	12.5	12.5
73363	SEMINOE1-2 6.9000	2	13.3	12.5	12.5
73381	BIRDSAL1 13.800	1	16	0	0
73382	BIRDSAL2 13.800	1	16	0	0
73383	BIRDSAL3 13.800	1	23	0	0
73418	RD_NIXON 20.000	1	230	224.8	224.8
73424	TESLA1 13.800	1	28	28	28
73427	DRAKE 5 13.800	1	60	49	49
73428	DRAKE 6 13.800	1	90	82.3	82.3
73429	DRAKE 7 13.800	1	150	139.1	139.1
73434	NIXONCT1 12.500	1	35	0	0
73435	NIXONCT2 12.500	1	35	0	0
73438	ALCOVA2 6.9000	1	20.7	20	20
73439	BBILL3-4 6.9000	1	6	5	5
73441	SEMINOE3 6.9000	1	13.3	13	13
73444	GUERNSY2 2.4000	2	3.2	2.5	2.5
73448	FLATIRN1 13.800	2	43	42	42
73449	FLATIRN2 13.800	1	43	43	43
73449	FLATIRN2 13.800	3	8.5	8	8
73461	ELBERT-2 11.500	1	100	99	99
73462	SPIRTMTN 6.9000	1	4.5	4	4
73507	FTRNG1CC 18.000	1	158	100	100
73508	FTRNG2CC 18.000	1	158	100	100
73509	FTRNG3CC 21.000	1	180	162	162
73520	BFDIESEL 4.1600	1	10	0	0


				Benchmark	GI-2013-7
Bus			Pmax	Pgen	Pgen
Number	Bus Name	Id	(MW)	(MW)	(MW)
73520	BFDIESEL 4.1600	5	10	0	0
73532	LINCOLN1 13.800	1	67	68	68
73533	LINCOLN2 13.800	1	67	68	68
73631	COHIWND_G1 0.6900	W	67.2	67	67
73708	SPNGCN2D 0.6900	1	59.5	59.5	59.5
73726	GI2013-7 EQ1 0.6900	1	142.8	N/A	142.8
74014	NSS_CT1 13.800	1	40	40	40
74015	NSS_CT2 13.800	1	40	40	40
74016	WYGEN 13.800	1	93.7	93.7	93.7
74017	WYGEN2 13.800	1	100	95	95
74018	WYGEN3 13.800	1	110	110	110
74029	LNG_CT1 13.800	1	40	40	40
74042	CLR_1 0.6000	1	29.4	29.4	29.4
74043	SS_GEN1 0.6000	1	42	42	42
74051	BC_DVAR 25.000	1	0	0	0
74399	BHPLPLAN 13.800	1	100	100	100
76301	ARVADA1 13.800	1	7.2	0	0
76302	ARVADA2 13.800	1	7.2	0	0
76303	ARVADA3 13.800	1	7.2	0	0
76305	BARBERC1 13.800	1	7.2	0	0
76306	BARBERC2 13.800	1	7.2	0	0
76307	BARBERC3 13.800	1	7.2	0	0
76309	HARTZOG1 13.800	1	7.2	0	0
76310	HARTZOG2 13.800	1	7.2	0	0
76311	HARTZOG3 13.800	1	7.2	0	0
76313	TK DVAR1 0.4800	1	0	0	0
76314	TK DVAR2 0.4800	1	0	0	0
76351	RCDC W 230.00	1	200	-130	-130
76404	DRYFORK 19.000	1	440	440	440
76502	SPFSHPRK 69.000	1	4	0	0
79015	CRAIG 1 22.000	1	470	400	260
79016	CRAIG 2 22.000	1	470	257	250
79017	CRAIG 3 22.000	1	470	208	208
79019	MORRO1-2 12.500	1	82	81	81
79019	MORRO1-2 12.500	2	82	81	81
79040	HAYDEN1 18.000	1	212	175	175
79041	HAYDEN2 22.000	1	286	250	250
79123	FONTNLLE 4.1600	1	10	9.5	9.5



				Benchmark	GI-2013-7
Bus Number	Bus Name	Id	Pmax (MW)	Pgen (MW)	Pgen (MW)
79154	FLGORG1 11.500	1	50	50	50
79155	FLGORG2 11.500	1	50	50	50
79156	FLGORG3 11.500	1	50	50	50
79157	BMESA1-2 11.000	1	43.2	42	42
79157	BMESA1-2 11.000	2	43.2	42	42
79158	NUCLA 1 13.800	1	12.6	12.6	12.6
79159	NUCLA 2 13.800	1	12.6	12.6	12.6
79160	NUCLA 3 13.800	1	12.6	12.6	12.6
79161	NUCLA 4 13.800	1	73.3	72	72
79162	CRYSTAL 12.500	1	27.5	27	27
79164	TOWAOC 6.9000	1	12	11	11
79166	MOLINA-L 4.2000	1	4.9	4.5	4.5
79172	MOLINA-U 4.2000	1	8.6	8.5	8.5
79176	MCPHEE 2.4000	1	1.3	1	1
79251	QFATLAS1 13.800	1	31.2	0	0
79251	QFATLAS1 13.800	2	18.2	0	0
79252	QFATLAS2 13.800	3	18.2	0	0
79252	QFATLAS2 13.800	4	18.2	0	0

B. One Line Diagrams

